Dual Equivalence Graphs Revisited with Applications to LLT and Macdonald Polynomials

نویسندگان

  • Austin Roberts
  • A. Roberts
چکیده

In 2007 Sami Assaf introduced dual equivalence graphs as a method for demonstrating that a quasisymmetric function is Schur positive. The method involves the creation of a graph whose vertices are weighted by Ira Gessel’s fundamental quasisymmetric functions so that the sum of the weights of a connected component is a single Schur function. In this paper, we improve on Assaf’s axiomatization of such graphs, giving locally testable criteria that are more easily verified by computers. We then demonstrate the utility of this result by giving explicit Schur expansions for a family of Lascoux-Leclerc-Thibon polynomials. This family properly contains the previously known case of polynomials indexed by two skew shapes, as was described in a 1995 paper by Christophe Carré and Bernard Leclerc. As an immediate corollary, we gain an explicit Schur expansion for a family of modified Macdonald polynomials in terms of Yamanouchi words. This family includes all polynomials indexed by shapes with less than four cells in the first row and strictly less than three cells in the second row, a slight improvement over the known two column case described in 2005 by James Haglund, Mark Haiman, and Nick Loehr. Résumé. En 2007, Sami Assaf a introduit la mé thode des graphes d’é quivalence duale pour dé montrer qu’une fonction quasisymmé trique est Schur-positive. La mé thode né cessite la cré ation d’un graphe dont les sommets sont pondé ré s par les fonctions quasisymmé triques fondamentales d’Ira Gessel tel que la somme des poids d’une composante connexe soit une unique fonction de Schur. Dans cet article, nous amé liorons l’axiomatisation d’Assaf pour ces graphes, et nous obtenons des critè res locaux qui sont plus facilement vé rifié s par ordinateur. Puis nous appliquons ces techniques pour pré senter des dé veloppements explicites en fonctions de Schur d’une famille de polynô mes de Lascoux-LeclercThibon. Cette famille contient strictement le cas des polynô mes indexé s par deux formes gauches, qui a é té dé crit dans un article en 1995 de Christophe Carré et Bernard Leclerc. Comme corollaire immé diat, nous obtenons un dé veloppement explicite en fonctions de Schur d’une famille de polynô mes de Macdonald modifié s, exprimé e au moyen de mots de Yamanouchi. Cette famille inclut tous les polynô mes indexé s par des formes de moins de quatre cellules dans la premiè re ligne et strictement moins de trois cellules dans la deuxiè me ligne, ce qui est une lé gè re amé lioration par rapport au cas connu de deux colonnes dé crit en 2005 par James Haglund, Mark Haiman, et Nick Loehr.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Equivalence Graphs and a Combinatorial Proof of Llt and Macdonald Positivity

We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. By constructing a graph on ribbon tableaux which we transform into a dual equivalence graph, we give a combinatorial proof of the symmetry and Schur positivity of the ribbon tableaux generating func...

متن کامل

Synopsis: Dual Equivalence Graphs, Ribbon Tableaux and Macdonald Polynomials

The primary focus of this dissertation is symmetric function theory. The main objectives are to present a new combinatorial construction which may be used to establish the symmetry and Schur positivity of a function expressed in terms of monomials, and to use this method to find a combinatorial description of the Schur expansion for two important classes of symmetric functions, namely LLT and M...

متن کامل

Dual equivalence graphs, ribbon tableaux and Macdonald polynomials

We make a systematic study of a new combinatorial construction called a dual equivalence graph. Motivated by the dual equivalence relation on standard Young tableaux introduced by Haiman, we axiomatize such constructions and prove that the generating functions of these graphs are Schur positive. We construct a graph on k-ribbon tableaux which we conjecture to be a dual equivalence graph, and we...

متن کامل

The Schur Expansion of Macdonald Polynomials

Building on Haglund’s combinatorial formula for the transformed Macdonald polynomials, we provide a purely combinatorial proof of Macdonald positivity using dual equivalence graphs and give a combinatorial formula for the coefficients in the Schur expansion.

متن کامل

Affine dual equivalence and k-Schur functions

The k-Schur functions were first introduced by Lapointe, Lascoux and Morse [18] in the hopes of refining the expansion of Macdonald polynomials into Schur functions. Recently, an alternative definition for k-Schur functions was given by Lam, Lapointe, Morse, and Shimozono [17] as the weighted generating function of starred strong tableaux which correspond with labeled saturated chains in the Br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013